

ADVANCED SUBSIDIARY GCE

MATHEMATICS

Core Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book

OCR Supplied Materials:

- Printed Answer Book 4721
- List of Formulae (MF1)

Other Materials Required: None 4721

Monday 24 May 2010 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Printed Answer Book.
- The questions are on the inserted Question Paper.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your Candidate Number, Centre Number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- You are **not** permitted to use a calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or destroyed.

(i) Evaluate 9^0 . 1 [1]

(ii) Express
$$9^{-\frac{1}{2}}$$
 as a fraction. [2]

2 (i) Sketch the curve
$$y = -\frac{1}{x^2}$$
. [2]

(ii) Sketch the curve
$$y = 3 - \frac{1}{x^2}$$
. [2]

(iii) The curve $y = -\frac{1}{x^2}$ is stretched parallel to the y-axis with scale factor 2. State the equation of the [1] transformed curve.

3 (i) Express
$$\frac{12}{3+\sqrt{5}}$$
 in the form $a - b\sqrt{5}$, where a and b are positive integers. [3]

(ii) Express
$$\sqrt{18} - \sqrt{2}$$
 in simplified surd form. [2]

- (i) Expand $(x-2)^2(x+1)$, simplifying your answer. 4 [3]
 - (ii) Sketch the curve $y = (x 2)^2(x + 1)$, indicating the coordinates of all intercepts with the axes. [3]
- Find the real roots of the equation $4x^4 + 3x^2 1 = 0$. 5

6 Find the gradient of the curve
$$y = 2x + \frac{6}{\sqrt{x}}$$
 at the point where $x = 4$. [5]

7 Solve the simultaneous equations

$$x + 2y - 6 = 0,$$
 $2x^2 + y^2 = 57.$ [6]

8	(i)	Express $2x^2 + 5x$ in the form $2(x+p)^2 + q$.	[3]
	(ii)	State the coordinates of the minimum point of the curve $y = 2x^2 + 5x$.	[2]
	(iii)	State the equation of the normal to the curve at its minimum point.	[1]
	(iv)	Solve the inequality $2x^2 + 5x > 0$.	[4]

4721 Jun10

[5]

- 9 (i) The line joining the points A (4, 5) and B (p, q) has mid-point M (-1, 3). Find p and q. [3]
 AB is the diameter of a circle.
 - (ii) Find the radius of the circle.
 - (iii) Find the equation of the circle, giving your answer in the form $x^2 + y^2 + ax + by + c = 0$. [3]

[2]

[5]

[4]

- (iv) Find an equation of the tangent to the circle at the point (4, 5).
- 10 (i) Find the coordinates of the stationary points of the curve $y = 2x^3 + 5x^2 4x$. [6]
 - (ii) State the set of values for x for which $2x^3 + 5x^2 4x$ is a decreasing function. [2]
 - (iii) Show that the equation of the tangent to the curve at the point where $x = \frac{1}{2}$ is 10x 4y 7 = 0.
 - (iv) Hence, with the aid of a sketch, show that the equation $2x^3 + 5x^2 4x = \frac{5}{2}x \frac{7}{4}$ has two distinct real roots. [2]

1 (i)	1	B1	1	
(ii)	$\frac{1}{3}$	M1		$\frac{1}{q^{\frac{1}{2}}}$ or $\frac{1}{\sqrt{9}}$ soi
		A1	2 3	cao
2 (i)	<i>y</i>	B1*		Reasonably correct curve for $y = -\frac{1}{x^2}$ in
	x			3 rd and 4 th quadrants only
		B1	2	Very good curves in curve for $y = -\frac{1}{2}$ in
		dep*		$3^{\rm rd}$ and $4^{\rm th}$ quadrants
	T			SC If 0, very good single curve in either 3^{rd} or 4^{th} quadrant and nothing in other three quadrants. B1
(ii)	<i>y</i> •			
	3	M1		Translation of their $y = -\frac{1}{x^2}$ vertically
		A1	2	Reasonably correct curve, horizontal asymptote soi at $y = 3$
(iii)	$v = -\frac{2}{2}$	B 1	1	
	x^2		5	
3 (i)	$\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$	M1		Multiply numerator and denom by $3 - \sqrt{5}$
	$=\frac{12(3-\sqrt{5})}{9-5}$	A1		$(3+\sqrt{5})(3-\sqrt{5}) = 9-5$
	$=9-3\sqrt{5}$	A1	3	
(ii)	$3\sqrt{2}-\sqrt{2}$	M1		Attempt to express $\sqrt{18}$ as $k\sqrt{2}$
	$=2\sqrt{2}$	A1	2 5	

Mark Scheme

4 (i)	$(x^2 - 4x + 4)(x + 1)$	M1		Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
	$-r^{3}-3r^{2}+4$	AI A1	2	Expansion with at most 1 incorrect term
	-x = 3x + 7			Correct, simplified answer
(ii)	4	B1		+ve cubic with 2 or 3 roots
		B1		Intercept of curve labelled (0, 4) or indicated on <i>y</i> -axis
	-1 2	B 1	3	(-1, 0) and turning point at $(2, 0)$ labelled or indicated on x-axis and no other x intercepts
	1		6	
5	$k = x^2$ $Ak^2 + 3k - 1 = 0$	M1*		Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^2
	(4k-1)(k+1) = 0	M1 dep		Correct method to solve a quadratic
	$k = \frac{1}{4}$ (or $k = -1$)	A1		
	$x = \pm \frac{1}{2}$	M1 A1	<u>5</u>	Attempt to square root to obtain $x \pm \frac{1}{2}$ and no other values
	1	M1	5	Attempt to differentiate
6	$y = 2x + 6x^{-\frac{1}{2}}$			Attempt to unrecentate $\frac{3}{2}$
	$\frac{dy}{dx} = 2 - 3x^{-\frac{3}{2}}$	Al Al		kx^{-2} Completely correct expression (no +c)
	When $x = 4$, gradient = $2 - \frac{3}{\sqrt{4^3}}$	M1		Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$
	$=\frac{13}{8}$	A1	5	
	0		5	
7	$2(6-2y)^2 + y^2 = 57$	M1*		substitute for x/y or attempt to get an equation in 1 variable only
		A1		correct unsimplified expression
	$2(36 - 24y + 4y^2) + y^2 = 57$			
	$9y^2 - 48y + 15 = 0$	A1		obtain correct 3 term quadratic
	$3y^2 - 16y + 5 = 0$	M1		correct method to solve 3 term quadratic
	(3y-1)(y-5) = 0	dep		···· ·································
	$y = \frac{1}{3}$ or $y = 5$	A1		
	$x = \frac{16}{3}$ or $x = -4$	A1	6 6	SC If A0 A0, one correct pair of values, spotted or from correct factorisation www

Â1

8 (i)	$2(x^2 + \frac{5}{2}x)$	D1		$(5)^{2}$
	$-2\left[\left(x+5\right)^2 25\right]$	RI		$\begin{pmatrix} x+-\\ 4 \end{pmatrix}$
	$= 2\left\lfloor \left\lfloor x + \frac{1}{4} \right\rfloor - \frac{1}{16} \right\rfloor$	M1		$q = -2p^2$ 25
	$=2\left(x+\frac{5}{4}\right)^2-\frac{25}{8}$	A1	3	$q = -\frac{2}{8}$ c.w.o.
(ii)	$\left(-\frac{5}{4},-\frac{25}{8}\right)$	B1√ B1√	2	
(iii)	$x = -\frac{5}{4}$	B 1	1	
(iv)	x(2x+5) > 0	M1		Correct method to find roots
		A1		0, $-\frac{3}{2}$ seen
	$x < -\frac{5}{2}, x > 0$	M1		Correct method to solve quadratic
	2	A1	4 10	(not wrapped, strict inequalities, no 'and')
9 (i)	$\frac{4+p}{2} = -1, \frac{5+q}{2} = 3$	M1		Correct method (may be implied by one correct coordinate)
	p = -6 $q = 1$	A1 A1	3	
(ii)	$r^{2} = (4 - 1)^{2} + (5 - 3)^{2}$	M1		Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for
	$r = \sqrt{29}$	A1	2	either radius or diameter
(iii)	$(x+1)^2 + (y-3)^2 = 29$	M1		$(x+1)^2$ and $(y-3)^2$ seen
		M1		$(x\pm 1)^2 + (y\pm 3)^2 = \text{their } r^2$
	$x + y^{-} + 2x - 6y - 19 = 0$	A1	3	Correct equation in correct form
(iv)	gradient of radius = $\frac{3-5}{-1-4}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{2}{5}$	A1		oe
	gradient of tangent = $-\frac{5}{2}$	B 1√		oe
	$y-5 = -\frac{5}{2}(x-4)$	M1		correct equation of straight line through (4, 5), any non-zero gradient
	$y = -\frac{5}{2}x + 15$	A1	5 13	oe 3 term equation e.g. $5x + 2y = 30$

10(i)	$\frac{dy}{dx} = 6x^2 + 10x - 4$	B1 B1		1 term correct Completely correct (no +c)
	$6x^{2} + 10x - 4 = 0$ 2(3x ² + 5x - 2) = 0	M1*		Sets their $\frac{dy}{dx} = 0$
	$2(3x^{-}+3x^{-}2) = 0$ (3x-1)(x+2) = 0	M1 dep*		Correct method to solve quadratic
	$x = \frac{1}{3}$ or $x = -2$	A1		SC If A0 A0, one correct pair of values,
	$y = -\frac{15}{27}$ or $y = 12$	A1	6	B1
(ii)	$-2 < x < \frac{1}{2}$	M1		Any inequality (or inequalities) involving both their <i>x</i> values from part (i)
	3	A1	2	Allow \leq and \geq
(iii)	When $x = \frac{1}{2}$, $6x^2 + 10x - 4 = \frac{5}{2}$	M1		Substitute $x = \frac{1}{2}$ into their $\frac{dy}{dx}$
	and $2x^3 + 5x^2 - 4x = -\frac{1}{2}$	B1		Correct <i>y</i> coordinate
	$y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right)$	M1		Correct equation of straight line using their values. Must use their $\frac{dy}{dx}$ value not e.g. the
				negative reciprocal
	10x - 4y - 7 = 0	A1	4	Shows rearrangement to given equation CWO throughout for A1
(iv)	y	B1		Sketch of a cubic with a tangent which meets it at 2 points only
		B1	2 14	+ve cubic with max/min points and line with +ve gradient as tangent to the curve to the right of the min
	x			SC1 B1 Convincing algebra to show that the cubic $8x^3 + 20x^2 - 26x + 7 = 0$ factorises into (2x - 1)(2x - 1)(x + 7) B1 Correct argument to say there are 2 distinct roots SC2 B1 Recognising y = 2.5x -7/4 is tangent from part (iii) B1 As second B1 on main scheme